Kinetica C# API  Version 6.2.0.1
kinetica.AggregateKMeansResponse Class Reference

A set of results returned by Kinetica.aggregateKMeans(string,IList<string>,int,double,IDictionary<string, string>). More...

+ Inheritance diagram for kinetica.AggregateKMeansResponse:
+ Collaboration diagram for kinetica.AggregateKMeansResponse:

Properties

IList< IList< double > > means [get, set]
 The k-mean values found. More...
 
IList< long > counts = new List<IList<double>>() [get, set]
 The number of elements in the cluster closest the corresponding k-means values. More...
 
IList< double > rms_dists = new List<long>() [get, set]
 The root mean squared distance of the elements in the cluster for each of the k-means values. More...
 
long count = new List<double>() [get, set]
 The total count of all the clusters - will be the size of the input table. More...
 
double rms_dist [get, set]
 The sum of all the rms_dists - the value the k-means algorithm is attempting to minimize. More...
 
double tolerance [get, set]
 The distance between the last two iterations of the algorithm before it quit. More...
 
int num_iters [get, set]
 The number of iterations the algorithm executed before it quit. More...
 
- Properties inherited from kinetica.KineticaData
Schema Schema [get]
 Avro Schema for this class More...
 

Additional Inherited Members

- Public Member Functions inherited from kinetica.KineticaData
 KineticaData (KineticaType type)
 Constructor from Kinetica Type More...
 
 KineticaData (System.Type type=null)
 Default constructor, with optional System.Type More...
 
object Get (int fieldPos)
 Retrieve a specific property from this object More...
 
void Put (int fieldPos, object fieldValue)
 Write a specific property to this object More...
 
- Static Public Member Functions inherited from kinetica.KineticaData
static RecordSchema SchemaFromType (System.Type t, KineticaType ktype=null)
 Create an Avro Schema from a System.Type and a KineticaType. More...
 

Detailed Description

Property Documentation

◆ count

long kinetica.AggregateKMeansResponse.count = new List<double>()
getset

The total count of all the clusters - will be the size of the input table.

Definition at line 198 of file AggregateKMeans.cs.

◆ counts

IList<long> kinetica.AggregateKMeansResponse.counts = new List<IList<double>>()
getset

The number of elements in the cluster closest the corresponding k-means values.

Definition at line 190 of file AggregateKMeans.cs.

◆ means

IList<IList<double> > kinetica.AggregateKMeansResponse.means
getset

The k-mean values found.

Definition at line 186 of file AggregateKMeans.cs.

◆ num_iters

int kinetica.AggregateKMeansResponse.num_iters
getset

The number of iterations the algorithm executed before it quit.

Definition at line 210 of file AggregateKMeans.cs.

◆ rms_dist

double kinetica.AggregateKMeansResponse.rms_dist
getset

The sum of all the rms_dists - the value the k-means algorithm is attempting to minimize.

Definition at line 202 of file AggregateKMeans.cs.

◆ rms_dists

IList<double> kinetica.AggregateKMeansResponse.rms_dists = new List<long>()
getset

The root mean squared distance of the elements in the cluster for each of the k-means values.

Definition at line 194 of file AggregateKMeans.cs.

◆ tolerance

double kinetica.AggregateKMeansResponse.tolerance
getset

The distance between the last two iterations of the algorithm before it quit.

Definition at line 206 of file AggregateKMeans.cs.


The documentation for this class was generated from the following file: