Kinetica C# API  Version 7.0.19.0
 All Classes Namespaces Files Functions Variables Enumerations Enumerator Properties Pages
AggregateKMeans.cs
Go to the documentation of this file.
1 /*
2  * This file was autogenerated by the Kinetica schema processor.
3  *
4  * DO NOT EDIT DIRECTLY.
5  */
6 
7 using System.Collections.Generic;
8 
9 
10 
11 namespace kinetica
12 {
13 
31  {
32 
58  public struct Options
59  {
60 
63  public const string WHITEN = "whiten";
64 
67  public const string MAX_ITERS = "max_iters";
68 
72  public const string NUM_TRIES = "num_tries";
73  } // end struct Options
74 
75 
78  public string table_name { get; set; }
79 
84  public IList<string> column_names { get; set; } = new List<string>();
85 
88  public int k { get; set; }
89 
92  public double tolerance { get; set; }
93 
117  public IDictionary<string, string> options { get; set; } = new Dictionary<string, string>();
118 
119 
123 
163  IList<string> column_names,
164  int k,
165  double tolerance,
166  IDictionary<string, string> options = null)
167  {
168  this.table_name = table_name ?? "";
169  this.column_names = column_names ?? new List<string>();
170  this.k = k;
171  this.tolerance = tolerance;
172  this.options = options ?? new Dictionary<string, string>();
173  } // end constructor
174 
175  } // end class AggregateKMeansRequest
176 
177 
178 
183  {
184 
186  public IList<IList<double>> means { get; set; } = new List<IList<double>>();
187 
190  public IList<long> counts { get; set; } = new List<long>();
191 
194  public IList<double> rms_dists { get; set; } = new List<double>();
195 
198  public long count { get; set; }
199 
202  public double rms_dist { get; set; }
203 
206  public double tolerance { get; set; }
207 
210  public int num_iters { get; set; }
211 
213  public IDictionary<string, string> info { get; set; } = new Dictionary<string, string>();
214 
215  } // end class AggregateKMeansResponse
216 
217 
218 
219 
220 } // end namespace kinetica
A set of results returned by Kinetica.aggregateKMeans(string,IList{string},int,double,IDictionary{string, string}).
int k
The number of mean points to be determined by the algorithm.
long count
The total count of all the clusters - will be the size of the input table.
IList< string > column_names
List of column names on which the operation would be performed.
double tolerance
The distance between the last two iterations of the algorithm before it quit.
AggregateKMeansRequest()
Constructs an AggregateKMeansRequest object with default parameters.
const string WHITEN
When set to 1 each of the columns is first normalized by its stdv - default is not to whiten...
int num_iters
The number of iterations the algorithm executed before it quit.
AggregateKMeansRequest(string table_name, IList< string > column_names, int k, double tolerance, IDictionary< string, string > options=null)
Constructs an AggregateKMeansRequest object with the specified parameters.
const string MAX_ITERS
Number of times to try to hit the tolerance limit before giving up - default is 10.
const string NUM_TRIES
Number of times to run the k-means algorithm with a different randomly selected starting points - hel...
IDictionary< string, string > options
Optional parameters.
string table_name
Name of the table on which the operation will be performed.
A set of parameters for Kinetica.aggregateKMeans(string,IList{string},int,double,IDictionary{string, string}).
IList< IList< double > > means
The k-mean values found.
double rms_dist
The sum of all the rms_dists - the value the k-means algorithm is attempting to minimize.
IList< double > rms_dists
The root mean squared distance of the elements in the cluster for each of the k-means values...
IList< long > counts
The number of elements in the cluster closest the corresponding k-means values.
double tolerance
Stop iterating when the distances between successive points is less than the given tolerance...
KineticaData - class to help with Avro Encoding for Kinetica
Definition: KineticaData.cs:14
IDictionary< string, string > info
Additional information.