7 using System.Collections.Generic;
63 public const string WHITEN =
"whiten";
84 public IList<string>
column_names {
get; set; } =
new List<string>();
88 public int k {
get; set; }
117 public IDictionary<string, string>
options {
get; set; } =
new Dictionary<string, string>();
166 IDictionary<string, string>
options = null)
168 this.table_name = table_name ??
"";
169 this.column_names = column_names ??
new List<string>();
172 this.options =
options ??
new Dictionary<string, string>();
186 public IList<IList<double>>
means {
get; set; } =
new List<IList<double>>();
190 public IList<long>
counts {
get; set; } =
new List<long>();
194 public IList<double>
rms_dists {
get; set; } =
new List<double>();
213 public IDictionary<string, string>
info {
get; set; } =
new Dictionary<string, string>();
A set of results returned by Kinetica.aggregateKMeans(string,IList{string},int,double,IDictionary{string, string}).
int k
The number of mean points to be determined by the algorithm.
long count
The total count of all the clusters - will be the size of the input table.
IList< string > column_names
List of column names on which the operation would be performed.
double tolerance
The distance between the last two iterations of the algorithm before it quit.
AggregateKMeansRequest()
Constructs an AggregateKMeansRequest object with default parameters.
const string WHITEN
When set to 1 each of the columns is first normalized by its stdv - default is not to whiten...
int num_iters
The number of iterations the algorithm executed before it quit.
AggregateKMeansRequest(string table_name, IList< string > column_names, int k, double tolerance, IDictionary< string, string > options=null)
Constructs an AggregateKMeansRequest object with the specified parameters.
const string MAX_ITERS
Number of times to try to hit the tolerance limit before giving up - default is 10.
const string NUM_TRIES
Number of times to run the k-means algorithm with a different randomly selected starting points - hel...
IDictionary< string, string > options
Optional parameters.
string table_name
Name of the table on which the operation will be performed.
A set of parameters for Kinetica.aggregateKMeans(string,IList{string},int,double,IDictionary{string, string}).
IList< IList< double > > means
The k-mean values found.
double rms_dist
The sum of all the rms_dists - the value the k-means algorithm is attempting to minimize.
IList< double > rms_dists
The root mean squared distance of the elements in the cluster for each of the k-means values...
IList< long > counts
The number of elements in the cluster closest the corresponding k-means values.
double tolerance
Stop iterating when the distances between successive points is less than the given tolerance...
KineticaData - class to help with Avro Encoding for Kinetica
IDictionary< string, string > info
Additional information.