7 using System.Collections.Generic;
165 public const string TRUE =
"true";
166 public const string FALSE =
"false";
201 public const string TTL =
"ttl";
220 public int k {
get; set; }
313 public IDictionary<string, string>
options {
get; set; } =
new Dictionary<string, string>();
428 IDictionary<string, string>
options = null)
430 this.table_name = table_name ??
"";
431 this.column_names = column_names ??
new List<string>();
434 this.options =
options ??
new Dictionary<string, string>();
470 public IList<IList<double>>
means {
get; set; } =
new List<IList<double>>();
474 public IList<long>
counts {
get; set; } =
new List<long>();
478 public IList<double>
rms_dists {
get; set; } =
new List<double>();
507 public IDictionary<string, string>
info {
get; set; } =
new Dictionary<string, string>();
A set of results returned by Kinetica.aggregateKMeans(string,IList{string},int,double,IDictionary{string, string}).
int k
The number of mean points to be determined by the algorithm.
long count
The total count of all the clusters - will be the size of the input table.
IList< string > column_names
List of column names on which the operation would be performed.
double tolerance
The distance between the last two iterations of the algorithm before it quit.
AggregateKMeansRequest()
Constructs an AggregateKMeansRequest object with default parameters.
const string WHITEN
When set to 1 each of the columns is first normalized by its stdv - default is not to whiten...
int num_iters
The number of iterations the algorithm executed before it quit.
AggregateKMeansRequest(string table_name, IList< string > column_names, int k, double tolerance, IDictionary< string, string > options=null)
Constructs an AggregateKMeansRequest object with the specified parameters.
const string MAX_ITERS
Number of times to try to hit the tolerance limit before giving up - default is 10.
const string NUM_TRIES
Number of times to run the k-means algorithm with a different randomly selected starting points - hel...
IDictionary< string, string > options
Optional parameters.
string table_name
Name of the table on which the operation will be performed.
A set of parameters for Kinetica.aggregateKMeans(string,IList{string},int,double,IDictionary{string, string}).
IList< IList< double > > means
The k-mean values found.
double rms_dist
The sum of all the rms_dists - the value the k-means algorithm is attempting to minimize.
IList< double > rms_dists
The root mean squared distance of the elements in the cluster for each of the k-means values...
IList< long > counts
The number of elements in the cluster closest the corresponding k-means values.
double tolerance
Stop iterating when the distances between successive points is less than the given tolerance...
const string QUALIFIED_RESULT_TABLE_NAME
The fully qualified name of the result table (i.e.
const string CREATE_TEMP_TABLE
If true, a unique temporary table name will be generated in the sys_temp schema and used in place of ...
KineticaData - class to help with Avro Encoding for Kinetica
IDictionary< string, string > info
Additional information.
const string RESULT_TABLE
The name of a table used to store the results, in [schema_name.
const string TTL
Sets the TTL of the table specified in result_table.
const string RESULT_TABLE_PERSIST
If true, then the result table specified in result_table will be persisted and will not expire unless...