Kinetica C# API  Version 7.1.10.0
All Classes Namespaces Files Functions Variables Enumerations Enumerator Properties Pages
AggregateKMeans.cs
Go to the documentation of this file.
1 /*
2  * This file was autogenerated by the Kinetica schema processor.
3  *
4  * DO NOT EDIT DIRECTLY.
5  */
6 
7 using System.Collections.Generic;
8 
9 
10 
11 namespace kinetica
12 {
13 
37  {
38 
128  public struct Options
129  {
130 
133  public const string WHITEN = "whiten";
134 
137  public const string MAX_ITERS = "max_iters";
138 
142  public const string NUM_TRIES = "num_tries";
143 
164  public const string CREATE_TEMP_TABLE = "create_temp_table";
165  public const string TRUE = "true";
166  public const string FALSE = "false";
167 
176  public const string RESULT_TABLE = "result_table";
177 
196  public const string RESULT_TABLE_PERSIST = "result_table_persist";
197 
201  public const string TTL = "ttl";
202  } // end struct Options
203 
204 
210  public string table_name { get; set; }
211 
216  public IList<string> column_names { get; set; } = new List<string>();
217 
220  public int k { get; set; }
221 
224  public double tolerance { get; set; }
225 
313  public IDictionary<string, string> options { get; set; } = new Dictionary<string, string>();
314 
315 
319 
425  IList<string> column_names,
426  int k,
427  double tolerance,
428  IDictionary<string, string> options = null)
429  {
430  this.table_name = table_name ?? "";
431  this.column_names = column_names ?? new List<string>();
432  this.k = k;
433  this.tolerance = tolerance;
434  this.options = options ?? new Dictionary<string, string>();
435  } // end constructor
436 
437  } // end class AggregateKMeansRequest
438 
439 
440 
445  {
446 
460  public struct Info
461  {
462 
465  public const string QUALIFIED_RESULT_TABLE_NAME = "qualified_result_table_name";
466  } // end struct Info
467 
468 
470  public IList<IList<double>> means { get; set; } = new List<IList<double>>();
471 
474  public IList<long> counts { get; set; } = new List<long>();
475 
478  public IList<double> rms_dists { get; set; } = new List<double>();
479 
482  public long count { get; set; }
483 
486  public double rms_dist { get; set; }
487 
490  public double tolerance { get; set; }
491 
494  public int num_iters { get; set; }
495 
507  public IDictionary<string, string> info { get; set; } = new Dictionary<string, string>();
508 
509  } // end class AggregateKMeansResponse
510 
511 
512 
513 
514 } // end namespace kinetica
A set of results returned by Kinetica.aggregateKMeans(string,IList{string},int,double,IDictionary{string, string}).
int k
The number of mean points to be determined by the algorithm.
long count
The total count of all the clusters - will be the size of the input table.
IList< string > column_names
List of column names on which the operation would be performed.
double tolerance
The distance between the last two iterations of the algorithm before it quit.
AggregateKMeansRequest()
Constructs an AggregateKMeansRequest object with default parameters.
const string WHITEN
When set to 1 each of the columns is first normalized by its stdv - default is not to whiten...
int num_iters
The number of iterations the algorithm executed before it quit.
AggregateKMeansRequest(string table_name, IList< string > column_names, int k, double tolerance, IDictionary< string, string > options=null)
Constructs an AggregateKMeansRequest object with the specified parameters.
const string MAX_ITERS
Number of times to try to hit the tolerance limit before giving up - default is 10.
const string NUM_TRIES
Number of times to run the k-means algorithm with a different randomly selected starting points - hel...
IDictionary< string, string > options
Optional parameters.
string table_name
Name of the table on which the operation will be performed.
A set of parameters for Kinetica.aggregateKMeans(string,IList{string},int,double,IDictionary{string, string}).
IList< IList< double > > means
The k-mean values found.
double rms_dist
The sum of all the rms_dists - the value the k-means algorithm is attempting to minimize.
IList< double > rms_dists
The root mean squared distance of the elements in the cluster for each of the k-means values...
IList< long > counts
The number of elements in the cluster closest the corresponding k-means values.
double tolerance
Stop iterating when the distances between successive points is less than the given tolerance...
const string QUALIFIED_RESULT_TABLE_NAME
The fully qualified name of the result table (i.e.
const string CREATE_TEMP_TABLE
If true, a unique temporary table name will be generated in the sys_temp schema and used in place of ...
KineticaData - class to help with Avro Encoding for Kinetica
Definition: KineticaData.cs:14
IDictionary< string, string > info
Additional information.
const string RESULT_TABLE
The name of a table used to store the results, in [schema_name.
const string TTL
Sets the TTL of the table specified in result_table.
const string RESULT_TABLE_PERSIST
If true, then the result table specified in result_table will be persisted and will not expire unless...