public class AggregateKMeansResponse extends Object implements org.apache.avro.generic.IndexedRecord
GPUdb.aggregateKMeans(AggregateKMeansRequest)
.Modifier and Type | Class and Description |
---|---|
static class |
AggregateKMeansResponse.Info
Additional information.
|
Constructor and Description |
---|
AggregateKMeansResponse()
Constructs an AggregateKMeansResponse object with default parameters.
|
Modifier and Type | Method and Description |
---|---|
boolean |
equals(Object obj) |
Object |
get(int index)
This method supports the Avro framework and is not intended to be called
directly by the user.
|
static org.apache.avro.Schema |
getClassSchema()
This method supports the Avro framework and is not intended to be called
directly by the user.
|
long |
getCount() |
List<Long> |
getCounts() |
Map<String,String> |
getInfo() |
List<List<Double>> |
getMeans() |
int |
getNumIters() |
double |
getRmsDist() |
List<Double> |
getRmsDists() |
org.apache.avro.Schema |
getSchema()
This method supports the Avro framework and is not intended to be called
directly by the user.
|
double |
getTolerance() |
int |
hashCode() |
void |
put(int index,
Object value)
This method supports the Avro framework and is not intended to be called
directly by the user.
|
AggregateKMeansResponse |
setCount(long count) |
AggregateKMeansResponse |
setCounts(List<Long> counts) |
AggregateKMeansResponse |
setInfo(Map<String,String> info) |
AggregateKMeansResponse |
setMeans(List<List<Double>> means) |
AggregateKMeansResponse |
setNumIters(int numIters) |
AggregateKMeansResponse |
setRmsDist(double rmsDist) |
AggregateKMeansResponse |
setRmsDists(List<Double> rmsDists) |
AggregateKMeansResponse |
setTolerance(double tolerance) |
String |
toString() |
public AggregateKMeansResponse()
public static org.apache.avro.Schema getClassSchema()
public AggregateKMeansResponse setMeans(List<List<Double>> means)
means
- The k-mean values found.this
to mimic the builder pattern.public List<Long> getCounts()
public AggregateKMeansResponse setCounts(List<Long> counts)
counts
- The number of elements in the cluster closest the
corresponding k-means values.this
to mimic the builder pattern.public List<Double> getRmsDists()
public AggregateKMeansResponse setRmsDists(List<Double> rmsDists)
rmsDists
- The root mean squared distance of the elements in the
cluster for each of the k-means values.this
to mimic the builder pattern.public long getCount()
public AggregateKMeansResponse setCount(long count)
count
- The total count of all the clusters - will be the size of
the input table.this
to mimic the builder pattern.public double getRmsDist()
public AggregateKMeansResponse setRmsDist(double rmsDist)
rmsDist
- The sum of all the rms_dists - the value the k-means
algorithm is attempting to minimize.this
to mimic the builder pattern.public double getTolerance()
public AggregateKMeansResponse setTolerance(double tolerance)
tolerance
- The distance between the last two iterations of the
algorithm before it quit.this
to mimic the builder pattern.public int getNumIters()
public AggregateKMeansResponse setNumIters(int numIters)
numIters
- The number of iterations the algorithm executed before
it quit.this
to mimic the builder pattern.public Map<String,String> getInfo()
QUALIFIED_RESULT_TABLE_NAME
: The fully qualified name of the
result table (i.e. including the schema) used to store the
results.
Map
.public AggregateKMeansResponse setInfo(Map<String,String> info)
info
- Additional information.
QUALIFIED_RESULT_TABLE_NAME
: The fully qualified name of
the result table (i.e. including the schema) used to store
the results.
Map
.this
to mimic the builder pattern.public org.apache.avro.Schema getSchema()
getSchema
in interface org.apache.avro.generic.GenericContainer
public Object get(int index)
get
in interface org.apache.avro.generic.IndexedRecord
index
- the position of the field to getIndexOutOfBoundsException
public void put(int index, Object value)
put
in interface org.apache.avro.generic.IndexedRecord
index
- the position of the field to setvalue
- the value to setIndexOutOfBoundsException
Copyright © 2024. All rights reserved.