Using nulls begins with the nullability of type fields at type schema
creation time. After supplying a column name and primitive type in a
type schema, you can specify the NULLABLE
column property. Null values
and nullability are also supported for SQL via the Kinetica ODBC/JDBC
connector.
Setting nullability is possible using three different methods: via GAdmin, via the native API (using the /create/type endpoint), and via SQL. The process for specifying nullability varies between the different API languages and SQL; the process for each language is outlined below.
Note
The REST API does not have the ability to use built-in convenience
classes, so not only do you need to specify nullability at the
column property level but also at the type definition level as a
union between the type of the column and null
.
{
"type_definition":{
"type":"record",
"name":"example_null_type_rest",
"fields":[
{"name":"nullable_column", "type":["int", "null"]},
{"name":"non_nullable_column", "type":"int"}
],
"label":"example_null_type_rest",
"properties":{
"nullable_column":["nullable"]
}
}
}
#include "gpudb/GPUdb.hpp"
#include <boost/algorithm/string/classification.hpp>
#include <boost/algorithm/string/split.hpp>
#include <boost/lexical_cast.hpp>
#include <boost/optional/optional_io.hpp>
int main() {
// Establish connection with a locally-running instance of Kinetica
gpudb::GPUdb h_db("http://127.0.0.1:9191");
/* Create the 'columns' vector, and add two columns with types and properties
to the vector */
std::vector<gpudb::Type::Column> columns;
columns.push_back(gpudb::Type::Column("nullable_column", gpudb::Type::Column::ColumnType::DOUBLE, {gpudb::ColumnProperty::NULLABLE}));
columns.push_back(gpudb::Type::Column("non_nullable_column", gpudb::Type::Column::ColumnType::DOUBLE));
// Establish a type ('nullType') using a label and the 'columns' vector
gpudb::Type nullType("null_cpp_type", columns);
using System;
using System.Collections.Generic;
using Avro;
using kinetica;
namespace CreateNullType
{
/// <summary>
/// Creating a new type with a nullable column
/// </summary>
class create_null_type
{
// Create basic columns with a base type
private class null_type
{
public int nullable_column { get; set; }
public int non_nullable_column { get; set; }
}
static void Main()
{
// Establish connection with a locally-running instance of Kinetica
Kinetica h_db = new Kinetica("http://127.0.0.1:9191");
// Create a map of properties lists ('column_properties')
IDictionary<string, IList<string>> column_properties = new Dictionary<string, IList<string>>();
/* Create a properties list ('null_col_props') for the column with
the 'NULLABLE' property added, then map the properties list to
the 'nullable_column' in the 'column_properties' map */
List<string> null_col_props = new List<string>();
null_col_props.Add(ColumnProperty.NULLABLE);
column_properties.Add("nullable_column", null_col_props);
/* Set variable 'null_type' to the 'null_type' class with the
additional properties found in 'column_properties', then
create the type and print out the type ID */
KineticaType null_type = KineticaType.fromClass(typeof(null_type), column_properties);
string type_id = null_type.create(h_db);
Console.WriteLine("GPUdb generated type id for the new type - " + type_id);
}
import com.gpudb.*;
public class CreateNullType
{
/* Create columns, establish their ordering, provide column properties,
provide the column type, then provide a column name. */
public static class NullJavaType extends RecordObject
{
@RecordObject.Column(order = 0, properties = {ColumnProperty.NULLABLE})
public Integer nullable_column;
@RecordObject.Column(order = 1)
public Integer non_nullable_column;
}
public static void main(String[] args) throws GPUdbException {
// Establish connection with a locally-running instance of Kinetica
GPUdb gpudb = new GPUdb("http://localhost:9191");
// Create a type from the NullJavaType class and print out the type ID
String typeId = RecordObject.createType(NullJavaType.class, gpudb);
System.out.println("GPUdb generated type id for the new type - " + typeId);
}
}
'use strict';
/* nulls.html -- opened using a browser to call the create_null_type.js script
<!DOCTYPE html>
<html>
<head>
</head>
<body>
<script language="javascript" src="../javascript/GPUdb.js"> </script>
<script language="javascript" src="create_null_type.js"> </script>
</body>
</html>
*/
main();
function main()
{
// create a callback function to receive responses from Kinetica
var build_callback = function(success, error) {
return function(err, response) {
if (err === null) {
if (success !== undefined) {
success(response);
}
} else {
if (error !== undefined) {
error(err);
} else {
console.log(err);
}
}
};
}
// Establish connection with a locally-running instance of Kinetica
var h_db = new GPUdb( "http://localhost:9191" );
// Establish columns, base types, and properties
var null_type = new GPUdb.Type("null_js_type",
new GPUdb.Type.Column("nullable_column", "int", "nullable"),
new GPUdb.Type.Column("non_nullable_column", "int")
);
// Create a type and print out the type ID
null_type.create(h_db, build_callback(function(response) {
var type_id = response;
var GPUdb = require("../nodejs/GPUdb.js");
// Establish connection with a locally-running instance of Kinetica
var h_db = new GPUdb("http://localhost:9191");
// create a callback function to receive responses from Kinetica
var build_callback = function(success, error) {
return function(err, response) {
if (err === null) {
if (success !== undefined) {
success(response);
}
} else {
if (error !== undefined) {
error(err);
} else {
console.log(err);
}
}
};
}
var create_type = function() {
// Establish columns, base types, and properties
var null_type = new GPUdb.Type("null_node_type",
new GPUdb.Type.Column("nullable_column", "int", "nullable"),
new GPUdb.Type.Column("non_nullable_column", "int")
);
// Create a type and print out the type ID
null_type.create(h_db, build_callback(function(response) {
type_id = response;
process.stdout.write("GPUdb generated type id for the new type - " + type_id)
Note
The Python API has the ability to use built-in convenience
classes or to use a JSON string to specify nullability. However,
if using a JSON string to create a type, one needs to specify
nullability at the column property level but also at the type
definition level as a union between the type of the column and
null
.
import collections
import json
import gpudb
def create_null_types():
# Establish connection with a locally-running instance of Kinetica
h_db = gpudb.GPUdb(encoding = 'BINARY', host = '127.0.0.1', port = '9191')
# Creating a type using the GPUdbRecordType Object
columns = []
columns.append(gpudb.GPUdbRecordColumn("nullable_column", gpudb.GPUdbRecordColumn._ColumnType.DOUBLE, [gpudb.GPUdbColumnProperty.NULLABLE]))
columns.append(gpudb.GPUdbRecordColumn("non_nullable_column", gpudb.GPUdbRecordColumn._ColumnType.DOUBLE))
null_type_1 = gpudb.GPUdbRecordType(columns, label = "null_py_type_object")
null_type_1.create_type(h_db)
type_id = null_type_1.type_id
print "GPUdb generated type id for the new type (using the GPUdbRecordType Object) - {}".format(type_id)
# Creating a type using a JSON string
null_type_2 ='''{
"type": "record",
"name": "null_py_type_json",
"fields": [
{"name": "nullable_column", "type": ["double", "null"]},
{"name": "non_nullable_column", "type": "double"}
]
}'''
response = h_db.create_type(type_definition = null_type_2, label = "null_py_type_json", properties = {"nullable_column": ["nullable"]})
print "GPUdb generated type id for the new type (using a JSON string) - {}".format(response["type_id"])
# end create_null_types()
if __name__ == '__main__':
create_null_types()
Null values can be used in expressions much like any other value. Null functions can also be used on column names in expressions to test for and evaluate null column values. The native API null functions can be found here; the SQL null functions can be found here.
Given table employees
, you can query to see which employees have not input
their phone number into the employee record database using the SQL statement
SELECT *
FROM employees
WHERE phone_number IS null
Given roll-up view supervisors
, you can query to see the
number of employees assigned to each supervisor (if any) using the SQL
statement
SELECT firstname, lastname, NVL2(employees, employees, 0)
FROM supervisors
Given roll-up view budgets
, you can create a projection to track if a
department's budget has changed since last year using the NULLIF()
function.
For example, in Python:
gpudb.create_projection(table_name="budgets", projection_name="changing_budgets", column_names=["dept", "dept_id", "budget_prev", "NULLIF(budget_new, budget_prev) as budget_updated"])
There a couple items to note when attempting to use the /aggregate/*
endpoints on a table or view that contains null values.
COUNT()
usage, e.g., counting the amount of records in a
table or view (COUNT(*)
) will include records with null values even
if all the values in a record are null; however, counting the values in a
column (COUNT(column_name)
) will ignore null valuescount
and
null values for the other calculations (e.g., sum
, min
, var_pop
)Given the following table survey_response
:
first_name | last_name | |
---|---|---|
jdoe@yahoo.com | John | null |
mrsmith@aol.com | null | null |
null | null | null |
If queried like so
SELECT
COUNT(*) as count_survey_responses,
COUNT(email) as count_email,
COUNT(first_name) as count_fn,
COUNT(last_name) as count_ln
FROM survey_response
The following response is returned:
count_survey_responses | count_email | count_fn | count_ln |
---|---|---|---|
3 | 2 | 1 | 0 |