The pivot operation works much the same as the SQL concept: "rotating" and
expanding single columns of values into multiple columns (one for each value),
creating a wider but shorter table. It is nearly the opposite of the
unpivot operation, though it will merge duplicates and drop
null values, which unpivot cannot undo. You can perform pivot
operations using the pivot
and pivot_values
parameters in the
options
map of /aggregate/groupby or via the SQL
PIVOT function. Visit the Aggregation documentation to review
details on aggregating data.
A pivot operation could be used to convert a table like this:
+--------+--------------+----------------+
| name | phone_type | phone_number |
|--------+--------------+----------------|
| Jane | Home | 123-456-7890 |
| Jane | Work | 111-222-3333 |
| John | Home | 123-456-7890 |
| John | Cell | 333-222-1111 |
+--------+--------------+----------------+
into a table like this:
+--------+--------------+--------------+--------------+
| name | Home_Phone | Work_Phone | Cell_Phone |
|--------+--------------+--------------+--------------|
| Jane | 123-456-7890 | 111-222-3333 | |
| John | 123-456-7890 | | 333-222-1111 |
+--------+--------------+--------------+--------------+
Each phone type in the pivoted key column becomes a prefix of one of the
resulting value columns of the pivot, with the suffix for those columns
(Phone
) specified by the user.
The results of a pivot may be written to a separate
memory-only table using the result_table
option.
This table can be persisted (like normal tables) using the
result_table_persist
option.
Given a source table phone_list
, which lists each phone number for a
customer as a separate record in the table:
+--------+--------------+----------------+
| name | phone_type | phone_number |
|--------+--------------+----------------|
| Jane | Home | 123-456-7890 |
| Jane | Work | 111-222-3333 |
| John | Home | 123-456-7890 |
| John | Cell | 333-222-1111 |
+--------+--------------+----------------+
A pivot operation can be performed in Python like so, creating a single record per customer with the home, work, & cell phone numbers as separate columns:
h_db.aggregate_group_by(
table_name= "example.phone_list",
column_names= ["name", "MAX(phone_number) as Phone"],
offset= 0,
limit= 1000,
encoding= "json",
options= {
"sort_by": "key",
"pivot": "phone_type",
"pivot_values": "Home, Work, Cell"
}
)
The resulting table looks like this:
+--------+--------------+--------------+--------------+
| name | Home_Phone | Work_Phone | Cell_Phone |
|--------+--------------+--------------+--------------|
| Jane | 123-456-7890 | 111-222-3333 | |
| John | 123-456-7890 | | 333-222-1111 |
+--------+--------------+--------------+--------------+
Given a source table qtr_grade
, which lists each student's quarterly grade
as a separate record in the table:
+--------------+-----------+---------+
| student_id | quarter | grade |
|--------------+-----------+---------|
| 1 | q1 | 80 |
| 1 | q2 | 90 |
| 1 | q3 | 85 |
| 1 | q4 | 95 |
| 2 | q1 | 82 |
| 2 | q3 | 87 |
| 2 | q4 | 92 |
| 3 | q1 | 73 |
| 3 | q2 | 77 |
| 3 | q3 | 97 |
+--------------+-----------+---------+
Performing a pivot operation in Python on the table converts it into a table with one record per student with each quarter grade as a separate column:
h_db.aggregate_group_by(
table_name = "example.qtr_grade",
column_names = ["student_id", "MAX(grade) as grade"],
offset = 0,
limit = 1000,
encoding = "json",
options = {
"sort_by": "key",
"pivot": "quarter",
"pivot_values": "q1, q2, q3, q4"
}
)
The resulting table looks like this:
+--------------+------------+------------+------------+------------+
| student_id | q1_grade | q2_grade | q3_grade | q4_grade |
|--------------+------------+------------+------------+------------|
| 1 | 80 | 90 | 85 | 95 |
| 2 | 82 | | 87 | 92 |
| 3 | 73 | 77 | 97 | |
+--------------+------------+------------+------------+------------+
result_table
option is usedHome
will not match
records with values of HOME
or home
, and it will generate a new column
with Home
as the name (or part of the name if an alias was specified).