Version:

Resource Management Usage

Overview

Within Resource Management, there are three main areas of usage that take place while the database is online:

  1. Tiered Storage
  2. Resource Groups
  3. Tier Strategies

For configuration that must be performed while the database is offline, see Resource Management Configuration.

Tiered Storage

Once the database has started, only a limited set of configuration parameters are able to be modified for any tier:

Important

The capacity of the VRAM Tier cannot be changed at runtime.

If after modifying the tier, its usage is above the high watermark, watermark-based eviction will commence.

Altering a Tier

To modify a tier, use the /alter/tier endpoint.

For example, in Python, to resize a Disk Cache Tier instance with ID disk2 to 500MB and set the high & low watermark percentages to 95% & 90%, respectively:

h_db.alter_tier(
    name = 'DISK2',
    options = {
        'capacity': '524288000',
        'high_watermark': '95',
        'low_watermark': '90'
    }
)

Viewing a Tier

To view all tier layouts & attributes, use the /show/resource/statistics endpoint.

For example, in Python, to show the per-rank statistics of all tiers:

ranks = json.loads(h_db.show_resource_statistics()['statistics_map']['ranks'])

Viewing a Table's Tier Distribution

To view a table's per-rank tier distribution, use the table_names option of the /show/resource/statistics endpoint, specifying the name of the table as the value.

For example, in Python, to show the per-rank tier distribution of the preferred_customer table:

options = {'table_names': 'preferred_customer'}
ranks = json.loads(h_db.show_resource_statistics(options)['statistics_map']['ranks'])

To process the response and format it into a table, using tabulate, organized by rank and tier:

distribution_headers = ['Rank', 'Tier', 'ID', 'Size (bytes)', 'Priority', 'Evictable?']
distribution_data = []

for rank in ranks:
    tiers = json.loads(ranks[rank])['tiers']
    
    for tier in (
        ['VRAM', 'RAM'] + 
        ' DISK'.join(' 0123456789').split(' ') +
        ['PERSIST'] +
         ' COLD'.join(' 0123456789').split(' ')
    ):
        if tier in tiers:
            rank_tier_data = tiers[tier]['tables']['preferred_customer']
            
            if rank_tier_data:
                distribution_data.extend([[rank, tier, item['id'], item['size'], item['pri'], item['ev']] for item in rank_tier_data])

print( tabulate( distribution_data , headers = distribution_headers, tablefmt = 'grid') )

This produces a report similar to the following:

+--------+---------+----------------------------------------+----------------+------------+--------------+
|   Rank | Tier    | ID                                     |   Size (bytes) |   Priority | Evictable?   |
+========+=========+========================================+================+============+==============+
|      1 | RAM     | @preferred_customer@7129[last_seen][0] |          65536 |          8 | True         |
+--------+---------+----------------------------------------+----------------+------------+--------------+
|      1 | RAM     | @preferred_customer@7129[name][0]      |         262144 |          8 | True         |
+--------+---------+----------------------------------------+----------------+------------+--------------+
|      1 | RAM     | @preferred_customer@7129[id][0]        |          32768 |          8 | True         |
+--------+---------+----------------------------------------+----------------+------------+--------------+
|      1 | PERSIST | @preferred_customer@7129[last_seen][0] |             28 |          5 | False        |
+--------+---------+----------------------------------------+----------------+------------+--------------+
|      1 | PERSIST | @preferred_customer@7129[name][0]      |             28 |          5 | False        |
+--------+---------+----------------------------------------+----------------+------------+--------------+
|      1 | PERSIST | @preferred_customer@7129[id][0]        |             28 |          5 | False        |
+--------+---------+----------------------------------------+----------------+------------+--------------+
|      2 | RAM     | @preferred_customer@7129[last_seen][0] |          65536 |          8 | True         |
+--------+---------+----------------------------------------+----------------+------------+--------------+
|      2 | RAM     | @preferred_customer@7129[name][0]      |         262144 |          8 | True         |
+--------+---------+----------------------------------------+----------------+------------+--------------+
|      2 | RAM     | @preferred_customer@7129[id][0]        |          32768 |          8 | True         |
+--------+---------+----------------------------------------+----------------+------------+--------------+
|      2 | PERSIST | @preferred_customer@7129[last_seen][0] |             28 |          5 | False        |
+--------+---------+----------------------------------------+----------------+------------+--------------+
|      2 | PERSIST | @preferred_customer@7129[name][0]      |             28 |          5 | False        |
+--------+---------+----------------------------------------+----------------+------------+--------------+
|      2 | PERSIST | @preferred_customer@7129[id][0]        |             28 |          5 | False        |
+--------+---------+----------------------------------------+----------------+------------+--------------+

Resource Groups

Any resource groups can be created via the API or GAdmin while the database is running. The following resource groups will exist in every Kinetica instance:

  1. system: used by the database for scheduling its own resources; cannot be modified
  2. default: default resource group; can be modified when the database is stopped and will take effect when the database is subsequently started

Managing Resource Groups

To create a resource group, use the /create/resourcegroup endpoint.

For example, in Python, to create a system administrator resource group named memory_over_execution, which favors memory usage over execution speed & priority, using the following criteria:

  • 10GB of allowed VRAM usage
  • 100GB of allowed RAM usage
  • Maximum servicing worker thread count of 5
  • Maximum scheduling priority of 30
h_db.create_resource_group(
    name = 'memory_over_execution',
    tier_attributes = {
        'VRAM': {'max_memory': '10737418240'},
        'RAM': {'max_memory': '107374182400'}
    },
    ranking = '',
    options = {
        'max_cpu_concurrency': '5',
        'max_scheduling_priority': '30'
    }
)

To view the attributes of a resource group, use the /show/resourcegroups endpoint.

For example, in Python, to view the attributes of the resource group named memory_over_execution:

resource_groups = h_db.show_resource_groups(
    names = ['memory_over_execution'],
    options = {'show_default_group': 'false'}
)["groups"]

print "Resource group <memory_over_execution> properties:"
for resource_group_prop in sorted(resource_groups[0]):
    print '  {:s} = {:s}'.format(resource_group_prop, resource_groups[0][resource_group_prop])

To modify a resource group, use the /alter/resourcegroup endpoint.

For example, in Python, to modify the resource group that favors memory over execution (created above), using the follow criteria:

  • Increasing the VRAM allowance to 20GB
  • Increasing the RAM allowance to 200GB
  • Increasing the maximum allowable scheduling priority to 40
  • Setting the maximum eviction priority group members are allowed to assign objects to 4
h_db.alter_resource_group(
    name = 'memory_over_execution',
    tier_attributes = {
        'VRAM': {'max_memory': '21474836480'},
        'RAM': {'max_memory': '214748364800'}
    },
    options = {
        'max_scheduling_priority': '40',
        'max_tier_priority': '4'
    }
)

To delete a resource group, use the /delete/resourcegroup endpoint.

For example, in Python, to delete the resource group created above:

h_db.delete_resource_group('memory_over_execution')

Assigning Resource Groups to Users

To assign a resource group to a user, upon creation, use the /create/user/internal endpoint.

For example, in Python, to create a user named jsmith and assign the resource group named memory_over_execution:

h_db.create_user_internal(
    name = 'jsmith',
    password = 'password',
    options = {
        'resource_group': 'memory_over_execution'
    }
)

To assign a resource group to a user after creation, use the /alter/user endpoint.

For example, in Python, to assign the resource group named memory_over_execution to a user named jsmith:

h_db.alter_user(
    name = 'jsmith',
    action = 'set_resource_group',
    value = 'memory_over_execution'
)

To unassign a user's resource group, use the /alter/user endpoint.

For example, in Python, to unassign the resource group from a user named jsmith:

h_db.alter_user(
    name = 'jsmith',
    action = 'set_resource_group',
    value = ''
)

To show the resource groups assigned to a user, use the /show/security endpoint.

For example, in Python, to show the resource group assigned directly to a user named jsmith, and subsequently, resource groups assigned indirectly through the user's roles:

print 'User <jsmith> resource groups:'
user_security = h_db.show_security(['jsmith'])

print '  {:s}'.format(user_security['resource_groups']['jsmith'])

for role in user_security['roles']['jsmith']:
    if role not in ['authenticated','public']:
        role_security = h_db.show_security([role])

        print '  {:s}'.format(role_security['resource_groups'][role])

Assigning Resource Groups to Roles

To assign a resource group to a role, upon creation, use the /create/role endpoint.

For example, in Python, to create a role named executive and assign the resource group named execution_over_memory:

h_db.create_role(
    name = 'executive',
    options = {
        'resource_group': 'execution_over_memory'
    }
)

To assign a resource group to a role after creation, use the /alter/role endpoint.

For example, in Python, to assign the resource group named execution_over_memory to a role named executive:

h_db.alter_role(
    name = 'executive',
    action = 'set_resource_group',
    value = 'execution_over_memory'
)

To unassign a role's resource group, use the /alter/role endpoint.

For example, in Python, to unassign the resource group from a role named executive:

h_db.alter_role(
    name = 'executive',
    action = 'set_resource_group',
    value = ''
)

To show the resource group assigned to a role, use the /show/security endpoint.

For example, in Python, to show the resource group assigned to a role named executive:

print 'Role <executive> resource groups:'
role_security = h_db.show_security(['executive'])

print '  {:s}'.format(role_security['resource_groups']['executive'])

Tier Strategies

To assign a tier strategy to a table upon creation, use the /create/table endpoint.

For example, in Python, to create a table named preferred_customer and assign a tier strategy with the default VRAM Tier and below-average RAM Tier eviction priorities:

# eviction priority
table_customer_obj = gpudb.GPUdbTable(
    _type = [
        ['id', gpudb.GPUdbRecordColumn._ColumnType.INT, gpudb.GPUdbColumnProperty.PRIMARY_KEY],
        ['name', gpudb.GPUdbRecordColumn._ColumnType.STRING, gpudb.GPUdbColumnProperty.CHAR32],
        ['last_seen', gpudb.GPUdbRecordColumn._ColumnType.LONG, gpudb.GPUdbColumnProperty.TIMESTAMP]
    ],
    name = 'preferred_customer',
    options = {
        'strategy_definition': '((VRAM 1, RAM 3))'
    },
    db=h_db

To assign a tier strategy to a table after creation, use the /alter/table endpoint.

For example, in Python, to modify the preferred_customer table's tier strategy to an above-average RAM eviction priority for customers seen in the last week, and a moderately elevated RAM eviction priority for all other customers:

# RAM eviction priority for all other customers
tier_strategy = """
    (
        (VRAM 1, RAM 7) WHERE last_seen > TIMESTAMPADD(WEEK, -1, NOW()),
        (RAM 6)
    )
"""
table_customer_obj.alter_table(
    action = 'set_strategy_definition',
    value = tier_strategy

To reset a table's tier strategy to the default tier strategy:

# Reset the customer table's tier strategy to default
table_customer_obj.alter_table(
    action = 'set_strategy_definition',
    value = ''

To modify a table's tier strategy to have the following setup:

  • For id & name column data associated with customers seen in the last minute, cache those column in VRAM and make them unevictable from the RAM Tier
  • For all other data associated with customers seen in the last three days, give the data the highest evictable priority within the RAM Tier
  • For all remaining data, decrease the eviction priority within the RAM Tier slightly, while adding an above-average priority backing cache on the Disk Cache Tier instance named disk2
# strategy in addition to the table-level one
tier_strategy = """
    (
        (VRAM 1, RAM 9) WHERE last_seen > TIMESTAMPADD(DAY, -3, NOW()),
        (VRAM 1, RAM 8, DISK2 7)
    ),
    (
        COLUMNS id, name
            (VRAM 2, RAM 10) WHERE last_seen > TIMESTAMPADD(MINUTE, -1, NOW())
    )
"""
table_customer_obj.alter_table(
    action = 'set_strategy_definition',
    value = tier_strategy

To show a table's tier strategy, use the /show/table endpoint.

For example, in Python, to show the tier strategy of a customer table:

# Show the customer table's tier strategy
customer_tier_strategy = table_customer_obj.show_table()['additional_info'][0]['strategy_definition']