Note
This documentation is for a prior release of Kinetica. For the latest documentation, click here.
The following guide provides step by step instructions to get started using Kinetica as a data source to read from and write to. Source code for the connector can be found at:
Building the Kinetica NiFi Connector
The connector jar can be built with Maven.
Download the connector source:
$ git clone https://github.com/kineticadb/kinetica-connector-nifi.git $ cd kinetica-connector-nifi
If using a version of NiFi other than 1.3.0, update the pom.xml file with the correct version of NiFi in this block:
<parent> <groupId>org.apache.nifi</groupId> <artifactId>nifi-nar-bundles</artifactId> <version>1.3.0</version> </parent>
Build the connector jar:
$ mvn clean package
Installing the Kinetica NiFi Connector into NiFi
Deploy the connector jar built in the previous step to the NiFi libraries directory:
$ cp nifi-GPUdbNiFi-nar/target/nifi-GPUdbNiFi-nar-1.3.0.nar <NiFiHome>/lib
Getting Streaming Data from Kinetica to JSON or CSV Files
- Drag a new Processor onto the flow
- Select the GetKineticaToJSON or GetKineticaToCSV type
- Properties tab
- Server URL: The URL of the Kinetica instance you are using. This
will be:
- Format: https://<aws.fqdn>/<aws.cluster.name>/gpudb-0
- Example: https://abcdefg.cloud.kinetica.com/hijklmn/gpudb-0;CombinePrepareAndExecute=1;RowsPerFetch=20000
- Table Name: The name of the table to read from
- Table Monitor URL: The URL Kinetica will be using to forward any new
data inserted into the above table. This will be:
- Format: tcp://<aws.fqdn>:9002/
- Example: tcp://abcdefg.cloud.kinetica.com:9002/
- Delimiter: For CSVs, the delimiter used in the file (e.g., comma, tab, pipe, etc.); defaults to tab
- Username: Kinetica login username
- Password: Kinetica login password
- Server URL: The URL of the Kinetica instance you are using. This
will be:
The output of GetKineticaToJSON is a JSON file containing the record inserted into the Kinetica table.
The output of GetKineticaToCSV is a CSV file containing the record inserted into the Kinetica table.
Saving Data to Kinetica Using NiFi Attributes
Drag a new Processor onto the flow:
- Select the PutKinetica type
Settings tab:
- Under Auto terminate Relationships, check the failure and success options.
Properties tab:
Server URL: The URL of the Kinetica instance you are using. This will be:
- Format: https://<aws.fqdn>/<aws.cluster.name>/gpudb-0
- Example: https://abcdefg.cloud.kinetica.com/hijklmn/gpudb-0;CombinePrepareAndExecute=1;RowsPerFetch=20000
Collection Name: Set this value if you want the table created in a collection.
Table Name: The name of the table to write to
Schema: A CSV string, where each entry is:
Format: <fieldname>|<data type>[|<subtype>]
Example:
X|Float|data,Y|Float|data,TIMESTAMP|Long|data,TEXT|String|store_only|text_search
For more details on schemas, read the Kinetica documentation.
Batch Size: The size of the batch to compress for efficient loading
Username: Kinetica login username
Password: Kinetica login password
Update on Existing PK: If a primary key (PK) is defined for a table, then there are two options for handling each new record pending insert that has a PK value matching an existing record in the target table. If set to true, the record in the target table will be updated with the new record's values; if false, the new record will be discarded; defaults to false
Replicate Table: If true, the target table will be replicated; if false, the table will be distributed; defaults to false
Date Format: The date format to use to parse values in any datetime fields (e.g., dd-MM-yyyy hh:mm:ss)
TimeZone: Provide the timezone if the date is not from your local timezone
Specifying data to be saved into Kinetica:
- Place processors upstream from this which assigns values to user-defined attributes named <field name>, where <field name> is the name of a field in your table
- Each record written to your table will contain field values of:
- the value in the attributes with names <field name> or
- the value of null if no attribute is found with that field name
Saving Data to Kinetica Using Delimited Files
Drag a new Processor onto the flow
- Select the PutKineticaFromFile type
Settings tab:
- Under Auto terminate Relationships, check the failure and success options.
Properties tab:
Server URL: The URL of the Kinetica instance you are using. This will be:
- Format: https://<aws.fqdn>/<aws.cluster.name>/gpudb-0
- Example: https://abcdefg.cloud.kinetica.com/hijklmn/gpudb-0;CombinePrepareAndExecute=1;RowsPerFetch=20000
Collection Name: Set this value if you want the table created in a collection.
Table Name: The name of the table to write to
Schema: A CSV string, where each entry is:
Format: <fieldname>|<data type>[|<subtype>]
Example:
X|Float|data,Y|Float|data,TIMESTAMP|Long|data,TEXT|String|store_only|text_search
For more details on schemas, read the Kinetica documentation.
Delimiter: The delimiter used in the file (e.g., comma, tab, pipe, etc.); defaults to ,
Escape Character: The character used to escape other characters in the data (e.g., \); defaults to "
Quote Character: The character used to quote column data in the file (e.g., " or '); defaults to "
File Has Header: Whether the first line of the file is a header row or not; defaults to true
Batch Size: The size of the batch to compress for efficient loading
Error Handling: If true, the processor will skip rows that can't be loaded successfully (due to parse error, etc.); if false, the processor will stop loading as soon as an error occurs; defaults to true
Username: Kinetica login username
Password: Kinetica login password
Update on Existing PK: If a primary key (PK) is defined for a table, then there are two options for handling each new record pending insert that has a PK value matching an existing record in the target table. If set to true, the record in the target table will be updated with the new record's values; if false, the new record will be discarded; defaults to false
Replicate Table: If true, the target table will be replicated; if false, the table will be distributed; defaults to false
Date Format: The date format to use to parse values in any datetime fields (e.g., dd-MM-yyyy hh:mm:ss)
TimeZone: Provide the timezone if the date is not from your local timezone
Create a connector between the data source processor and the PutKineticaFromFile processor
- Details tab: check the with coordinates option.
The input for the PutKineticaFromFile processor is a delimited file.